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ality condition in open superstring field theory formulated by Berkovits when operator
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duced to a problem in the bosonic theory of finding a finite gauge parameter for a certain

pure-gauge configuration labeled by the parameter of the marginal deformation. We find
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exponential. The resulting solution satisfies the reality condition by construction.
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1. Introduction

Analytic methods in open bosonic string field theory [1]1 triggered by Schnabl’s construc-

tion of an analytic solution for tachyon condensation [6] and further developed in [7 – 21]

have recently been extended to open superstring field theory formulated by Berkovits [22],

and analytic solutions for marginal deformations were constructed in [23, 24].2 The solu-

tions are surprisingly simple and very similar to those in open bosonic string field theory

constructed in [20, 21]. However, the reality condition on the open superstring field was

not satisfied. While we expect that the solution in [23, 24] is equivalent to a real one by

a gauge transformation, it is desirable to find an analytic solution satisfying the reality

condition. In this paper we explicitly construct a real analytic solution.

The equation of motion in open superstring field theory [22] is

η0(e
−ΦQBeΦ) = 0, (1.1)

where Φ is the open superstring field and QB is the BRST operator. The superghost

sector is described by η, ξ, and φ [40, 41], and η0 is the zero mode of η. All the string

products in this paper are defined by the star product introduced in [1]. For any marginal

deformation of the boundary conformal field theory (CFT) for the open superstring, there

is an associated superconformal primary field V1/2 of dimension 1/2, and the marginal

operator V1 of dimension 1 is the supersymmetry transformation of V1/2. In open super-

string field theory [22], the solution to the linearized equation of motion associated with

the marginal deformation is given by the Grassmann-even state X corresponding to the

1See [2 – 5] for reviews on string field theory.
2For earlier study of marginal deformations in string field theory and related work, see [25 – 39].
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operator V (0) = cξe−φV1/2(0) in the state-operator mapping. When the deformation is

exactly marginal, we expect a solution to (1.1) of the following form:

Φλ =
∞∑

n=1

λnΦ(n) (1.2)

with Φ(1) = X, where λ is the deformation parameter. The goal of the paper is to construct

Φ(n) satisfying the reality condition when operator products made of V1 and V1/2 are

regular.

In [23] Erler proposed to solve the following equation:

e−ΦQBeΦ = Ψλ, (1.3)

where Ψλ is obtained from the solution for marginal deformations in open bosonic string

field theory constructed in [20, 21] by replacing the state corresponding to cVb(0) for the

bosonic string with the state QBX for the superstring, where Vb is the marginal operator

in the bosonic theory. The state Ψλ satisfies the equation of motion in open bosonic string

field theory,

QBΨλ + Ψ2
λ = 0, (1.4)

and to linear order in λ it reduces to

Ψλ = λQBX + O(λ2). (1.5)

Thus Ψλ is a pure-gauge solution generated by QBX, and we expect a solution to (1.3) of

the form

Φ = λX + O(λ2). (1.6)

Furthermore, Ψλ is annihilated by η0 because the state X satisfies the linearized equation

of motion η0QBX = 0. Therefore, the solution to (1.3) solves the equation of motion in

open superstring field theory (1.1), and the problem of solving the superstring theory has

been reduced to a problem in the bosonic theory. A simple solution to (1.3) was obtained

in [23], but the reality condition on the open superstring field was not satisfied. The same

solution was also obtained in [24] by a different approach.

Let us now consider the equation obtained from (1.3) by taking a derivative with

respect to λ. Since the left-hand side of (1.3) takes the form of a pure-gauge configuration

with respect to the gauge transformation in the bosonic theory, its infinitesimal change must

be written as an infinitesimal gauge transformation generated by some gauge parameter

which we call G(λ):

QBG(λ) + [Ψλ, G(λ)] = Ψ′
λ, Ψ′

λ ≡
d

dλ
Ψλ. (1.7)

Then a solution to (1.3) can be constructed by a path-ordered exponential of G(λ) as

eΦλ = Pexp

[∫ λ

0
dλ′G(λ′)

]
, (1.8)
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or

Φλ = ln Pexp

[∫ λ

0
dλ′G(λ′)

]
. (1.9)

If G(λ) satisfies the reality condition, the solution Φλ also satisfies the reality condition by

construction. This is our strategy for constructing a real solution in open superstring field

theory. It turns out that it is easy to find a real solution to (1.7).

After we completed the construction of solutions satisfying the reality condition, we

learned that T. Erler independently constructed analytic solutions satisfying the reality

condition by a different approach. His solutions were presented in the second version

of [23].

2. Pure-gauge string field

Let us begin with describing Ψλ in (1.3). It is obtained from the solution for marginal

deformations in open bosonic string field theory constructed in [20, 21] by replacing cVb in

the bosonic theory with the BRST transformation of V = cξe−φV1/2 for the superstring.

This section largely overlaps with section 2 of [24], where the solution in open bosonic string

field theory was reviewed. The string field Ψλ is defined by an expansion with respect to

λ as follows:

Ψλ =

∞∑

n=1

λnΨ(n). (2.1)

The BPZ inner product 〈ϕ,Ψ(n)〉 with a state ϕ in the Fock space is given by

〈ϕ,Ψ(n)〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1〈f ◦ ϕ(0)U(1)BU(1 + t1)BU(1 + t1 + t2) . . .

× BU(1 + t1 + t2 + . . . + tn−1)〉W1+t1+t2+...+tn−1
,

(2.2)

where U is the BRST transformation of V :

U(z) = QB · V (z), V (z) = cξe−φV1/2(z). (2.3)

We follow the notation used in [7, 14, 21]. In particular, see the beginning of section 2

of [7] for the relation to the notation used in [6]. Here and in what follows we use ϕ to

denote a generic state in the Fock space and ϕ(0) to denote its corresponding operator

in the state-operator mapping. We use the doubling trick in calculating CFT correlation

functions. As in [14], we define the oriented straight lines V ±
α by

V ±
α =

{
z
∣∣∣Re(z) = ±

1

2
(1 + α)

}
,

orientation : ±
1

2
(1 + α) − i∞ → ±

1

2
(1 + α) + i∞,

(2.4)

and the surface Wα can be represented as the region between V −
0 and V +

2α, where V −
0 and

V +
2α are identified by translation. The function f(z) is

f(z) =
2

π
arctan z, (2.5)
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and f ◦ϕ(z) denotes the conformal transformation of ϕ(z) by the map f(z). The operator

B is defined by

B =

∫
dz

2πi
b(z), (2.6)

and when B is located between two operators at t1 and t2 with 1/2 < t1 < t2, the contour

of the integral can be taken to be −V +
α with 2t1 − 1 < α < 2t2 − 1. The anticommutation

relation of B and c(z) is

{B, c(z)} = 1, (2.7)

and B2 = 0.

The state Ψ(n) can be written more compactly as

〈ϕ,Ψ(n)〉 =

∫
dn−1t

〈
f ◦ ϕ(0)

n−2∏

i=0

[
U(1 + ℓi)B

]
U(1 + ℓn−1)

〉

W1+ℓn−1

, (2.8)

where

∫
dn−1t ≡

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1, ℓ0 = 0, ℓi ≡

i∑

k=1

tk for i = 1, 2, 3, . . . . (2.9)

The state Ψλ can be represented as

Ψλ =
1

1 − λ(QBX)P
λQBX, (2.10)

where
1

1 − λ(QBX)P
≡ 1 +

∞∑

n=1

[λ(QBX)P ]n. (2.11)

The state X is described in the CFT language as

〈ϕ,X〉 = 〈f ◦ ϕ(0)V (1)〉W1
= 〈f ◦ ϕ(0)cξe−φV1/2(1)〉W1

, (2.12)

and the state QBX is

〈ϕ,QBX〉 = 〈f ◦ ϕ(0)QB · V (1)〉W1
= 〈f ◦ ϕ(0)U(1)〉W1

. (2.13)

The definition of P is a little involved.3 It is defined when it appears as ϕ1Pϕ2 between

two states ϕ1 and ϕ2 in the Fock space. The string product ϕ1Pϕ2 is given by

〈ϕ,ϕ1Pϕ2〉 =

∫ 1

0
dt〈f ◦ ϕ(0)f1 ◦ ϕ1(0)Bf1+t ◦ ϕ2(0)〉W1+t

, (2.14)

where ϕ1(0) and ϕ2(0) are the operators corresponding to the states ϕ1 and ϕ2, respectively.

The map fa(z) is a combination of f(z) and translation:

fa(z) =
2

π
arctan z + a. (2.15)

3The state P corresponds to Jb of [24] in the bosonic case and to η0J of [24] in the superstring case.
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The string product ϕ1Pϕ2 is well defined if f1 ◦ ϕ1(0)Bf1+t ◦ ϕ2(0) is regular in the limit

t → 0.

An important property of P is

ϕ1(QBP )ϕ2 = ϕ1ϕ2 (2.16)

when f1 ◦ ϕ1(0)f1+t ◦ ϕ2(0) vanishes in the limit t → 0. This relation can be shown in

the following way. Since the BRST transformation of b(z) is the energy-momentum tensor

T (z), the inner product 〈ϕ,ϕ1(QBP )ϕ2〉 is given by

〈ϕ,ϕ1(QBP )ϕ2〉 =

∫ 1

0
dt〈f ◦ ϕ(0)f1 ◦ ϕ1(0)Lf1+t ◦ ϕ2(0)〉W1+t

, (2.17)

where

L =

∫
dz

2πi
T (z), (2.18)

and the contour of the integral is the same as that of B. As discussed in [7], an insertion

of L is equivalent to taking a derivative with respect to t. It is analogous to the relation

L0e
−tL0 = − ∂te

−tL0 in the standard strip coordinates, where L0 is the zero mode of the

energy-momentum tensor. We thus have

〈ϕ,ϕ1(QBP )ϕ2〉 =

∫ 1

0
dt∂t〈f ◦ ϕ(0)f1 ◦ ϕ1(0)f1+t ◦ ϕ2(0)〉W1+t

= 〈f ◦ ϕ(0)f1 ◦ ϕ1(0)f2 ◦ ϕ2(0)〉W2
= 〈ϕ,ϕ1ϕ2〉

(2.19)

when f1 ◦ϕ1(0)f1+t ◦ϕ2(0) vanishes in the limit t → 0. This completes the proof of (2.16).

In the language of [21], ϕ1Pϕ2 is

ϕ1Pϕ2 =

∫ 1

0
dtϕ1e

−(t−1)L+

L (−B+
L )ϕ2, (2.20)

and the relation (2.16) follows from {QB , B+
L } = L+

L .

To summarize, when the regularity conditions we mentioned are satisfied, Ψλ is well

defined, and we can safely use the relation

QBP = 1 (2.21)

for the Grassmann-odd state P . It is then straightforward to calculate QBΨλ, and the

result is

QBΨλ = −
1

1 − λ(QBX)P
λ(QBX)

1

1 − λ(QBX)P
λQBX. (2.22)

We have thus shown that Ψλ satisfies the equation of motion for the bosonic string:

QBΨλ + Ψ2
λ = 0. (2.23)

Another important property of Ψλ is that η0Ψλ = 0. It is easy to see that η0 annihilates

Ψ(n) in (2.2) because η and b anticommute and U is annihilated by η0.

– 5 –
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3. Solution

Let us now solve

QBG(λ) + [Ψλ, G(λ)] = Ψ′
λ. (3.1)

The string field Ψ′
λ is given by

Ψ′
λ ≡

d

dλ
Ψλ =

1

1 − λ(QBX)P
(QBX)

1

1 − λP (QBX)
, (3.2)

where

1

1 − λ(QBX)P
≡ 1 +

∞∑

n=1

[λ(QBX)P ]n,
1

1 − λP (QBX)
≡ 1 +

∞∑

n=1

[λP (QBX)]n. (3.3)

We look for a solution made of X, P , and QB. We assume for the moment that states

involving P are well defined and that we can use the relation QBP = 1. We will discuss

regularity conditions necessary for these assumptions later. A string field within this ansatz

satisfies the reality condition if it is odd under the conjugation given by replacing X → −X

and by reversing the order of string products. Signs from anticommuting Grassmann-odd

string fields have to be taken care of in reversing the order of string products. For example,

the state Ψ(n) is real because its conjugation is given by

Ψ(n) = [(QBX)P ]n−1QBX

→ (−1)(2n−1)(n−1)(−QBX)[P (−QBX)]n−1 = − [(QBX)P ]n−1QBX
(3.4)

for any positive integer n. It is easy to find a perturbative solution to (3.1) by expanding

the equation and G(λ) in powers of λ. We find that the following state solves (3.1) to all

orders in λ and satisfies the reality condition:

G(λ) =
1

1 − λ(QBX)P
X

1

1 − λP (QBX)
. (3.5)

It is easy to see that G(λ) in (3.5) solves (3.1) from the following relations:

QB
1

1 − λ(QBX)P
= −

1

1 − λ(QBX)P
λ(QBX)

1

1 − λ(QBX)P
= − Ψλ

1

1 − λ(QBX)P
,

QB
1

1 − λP (QBX)
=

1

1 − λP (QBX)
λ(QBX)

1

1 − λP (QBX)
=

1

1 − λP (QBX)
Ψλ.

(3.6)

An explicit expression of G(λ) in the CFT description is given by

〈ϕ,G(λ)〉 =
∞∑

n=0

∞∑

m=0

λn+m

∫
dn+mt

〈
f ◦ ϕ(0)

n−1∏

i=0

[
U(1 + ℓi)B

]
V (1 + ℓn)

×

n+m∏

j=n+1

[
BU(1 + ℓj)

]〉
W1+ℓn+m

,

(3.7)

– 6 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
2

with the understanding that

−1∏

i=0

[
U(1 + ℓi)B

]
= 1,

n∏

j=n+1

[
BU(1 + ℓj)

]
= 1,

∫
d0t = 1. (3.8)

Following the strategy outlined in the introduction, we construct a solution to the equation

of motion (1.1) in open superstring field theory as follows:

eΦλ = Pexp

[∫ λ

0
dλ′G(λ′)

]
, (3.9)

or

Φλ = ln Pexp

[∫ λ

0
dλ′G(λ′)

]
, (3.10)

where our convention for the path-ordered exponential is

Pexp

[∫ b

a
dλ′G(λ′)

]
= 1 +

∫ b

a
dλ1G(λ1) +

∫ b

a
dλ1

∫ λ1

a
dλ2G(λ2)G(λ1)

+

∫ b

a
dλ1

∫ λ1

a
dλ2

∫ λ2

a
dλ3G(λ3)G(λ2)G(λ1) + . . . .

(3.11)

It can also be written as

Pexp

[∫ b

a
dλ′G(λ′)

]
= 1 +

∫ b

a
dλ1G(λ1) +

∫ b

a
dλ1

∫ b

λ1

dλ2G(λ1)G(λ2)

+

∫ b

a
dλ1

∫ b

λ1

dλ2

∫ b

λ2

dλ3G(λ1)G(λ2)G(λ3) + . . . .

(3.12)

The path-ordered exponential satisfies the differential equations given by

d

db
Pexp

[∫ b

a
dλ′G(λ′)

]
= Pexp

[∫ b

a
dλ′G(λ′)

]
G(b),

d

da
Pexp

[∫ b

a
dλ′G(λ′)

]
= − G(a)Pexp

[∫ b

a
dλ′G(λ′)

]
,

(3.13)

with the initial condition

Pexp

[∫ b

a
dλ′G(λ′)

]∣∣∣∣
a=b

= 1. (3.14)

The string field e−Φλ is given by

e−Φλ = Pexp

[∫ 0

λ
dλ′G(λ′)

]
. (3.15)

It is straightforward to verify that (3.1) can be obtained from (1.3) with Φ = Φλ in (3.10)

by taking a derivative with respect to λ. The equation of motion is trivially satisfied when

λ = 0. Thus Φλ in (3.10) satisfies the equation of motion (1.1) to all orders in λ. This

is the main result of this paper. We present the expansion of Φλ to O(λ3) in appendix

A. While it is guaranteed that Φλ satisfies the reality condition by construction, we can

– 7 –
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explicitly confirm this. Since the conjugate of G(λ) associated with the reality condition is

−G(λ), the conjugate of eΦλ is e−Φλ , as can be seen using the formulas (3.11) and (3.12).

Therefore, its logarithm Φλ satisfies the reality condition.

The analytic solution constructed in [23, 24] can also be written using a path-ordered

exponential. Let us denote the solution in [23, 24] by Φ̃λ. It is given by

e
eΦλ =

1

1 − Hλ
, (3.16)

where

Hλ =
1

1 − λ(QBX)P
λX. (3.17)

It is easy to calculate QBHλ and show that

e−
eΦλQBe

eΦλ = (QBHλ)
1

1 − Hλ
= Ψλ. (3.18)

Thus Φ̃λ solves the equation of motion (1.1). Since

d

dλ
e

eΦλ =
1

1 − Hλ
H ′

λ

1

1 − Hλ
= e

eΦλH ′
λ

1

1 − Hλ
, (3.19)

where

H ′
λ ≡

d

dλ
Hλ, (3.20)

and e
eΦλ = 1 at λ = 0, e

eΦλ can be written as

e
eΦλ = Pexp

[∫ λ

0
dλ′G̃(λ′)

]
with G̃(λ) = H ′

λ

1

1 − Hλ
. (3.21)

It is easy to verify that G̃(λ) satisfies (3.1) using the following equation:

d

dλ

[
(QBHλ)

1

1 − Hλ
− Ψλ

]
= QB

(
H ′

λ

1

1 − Hλ

)
+

[
Ψλ,H ′

λ

1

1 − Hλ

]
− Ψ′

λ = 0. (3.22)

We can think of Φλ in (3.10) and Φ̃λ as different choices from solutions to (3.1).

We conclude the section by discussing the regularity conditions mentioned in the pre-

ceding section. When we proved that G(λ) in (3.5) satisfies (3.1), we used the following

relations:

(QBX)(QBP )(QBX) = (QBX)(QBX),

(QBX)(QBP )X = (QBX)X,

X(QBP )(QBX) = X(QBX).

(3.23)

The first two relations were discussed in [24], and they hold if V1(z)V1(w), V1(z)V1/2(w),

and V1/2(z)V1/2(w) are regular in the limit w → z. The last relation also holds if these

conditions are satisfied. Let us next consider if the string field G(λ) itself is finite and

if any intermediate steps in the proof are well defined. The expressions can be divergent

when two or more operators collide, but if the states

[(QBX)P ]n−1(QBX), [(QBX)P ]n−1X[P (QBX)]m−1 (3.24)

– 8 –
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for any positive integers n and m are finite, the string field G(λ) and any interme-

diate steps in the proof are well defined. The conditions for [(QBX)P ]n−1(QBX) to

be finite were discussed in [24], and it is straightforward to extend the discussion to

[(QBX)P ]n−1X[P (QBX)]m−1. It is easy to confirm that the bc ghost sector is finite. For

the superghost sector, there is a new term of the form ηeφ(1)ξe−φ(1+ℓn−1)ηeφ(1+ℓn+m−2),

but it is regular as well. Therefore, all the expressions are well defined if the contributions

from the matter sector listed below are finite:

∫ 1

0
dtVα(1)Vγ(1 + t),

∫
dn+mtVα(1)

n−1∏

i=1

[
V1(1 + ℓi)

]
Vβ(1 + ℓn)

n+m−1∏

j=n+1

[
V1(1 + ℓj)

]
Vγ(1 + ℓn+m)

(3.25)

for any positive integers n and m, where Vα, Vβ, and Vγ can be V1 or V1/2, and we used

the notation introduced in (2.9) with the understanding that

0∏

i=1

[
V1(1 + ℓi)

]
= 1,

n∏

j=n+1

[
V1(1 + ℓj)

]
= 1. (3.26)

The only minor difference compared to the conditions for the solution in [24] is that V1/2

can appear three times. When the string field G(λ) is finite, the solution Φλ is also finite

to any finite order in λ. We thus conclude that if operator products of an arbitrary number

of V1’s and at most three V1/2’s are regular, the solution Φλ in (3.10) made of G(λ) in (3.5)

is well defined and satisfies the equation of motion (1.1).

4. Discussion

We have constructed analytic solutions for marginal deformations satisfying the reality

condition in open superstring field theory when operator products made of V1 and V1/2

are regular. It is important to extend the construction to the cases where the operator

products are singular. Since the structure of G(λ) is very similar to that of the solutions

for the bosonic string in [20, 21], we hope that it will not be difficult to construct solutions

for the superstring once we complete the program of constructing solutions with singular

operator products developed in [21].4

It was important for the approach by Erler [23] that the equation of motion in open

superstring field theory (1.1) takes the form that η0 annihilates the pure-gauge configura-

tion e−ΦQBeΦ of open bosonic string field theory. Interestingly, the equation of motion in

heterotic string field theory [43, 44] takes the form that η0 annihilates a pure-gauge con-

figuration of closed bosonic string field theory [45 – 50]. Therefore, a similar approach may

be useful in constructing solutions in heterotic string field theory once we find solutions in

closed bosonic string field theory.

4It is not clear if the recent approach to the construction of solutions with singular operator products

in [42] can be directly extended to the superstring within our framework.
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The open superstring field theory formulated by Berkovits can also be used to describe

the N = 2 string by replacing QB and η0 with the generators in the N = 2 string [22]. The

reality condition for the N = 2 string is different from that for the ordinary superstring, and

it is not clear if an approach similar to the one in this paper will be useful in constructing

solutions satisfying the reality condition for the N = 2 string.

Open superstring field theory formulated by Berkovits [22] is more than ten years old,

and its first analytic solutions have now been constructed. We expect further exciting

developments in the near future.

Note added. The convention for the conjugation associated with the reality condition

in this paper and in [24] is different from the one used in [23, 51, 52]. Let us explain the

relation between the two conventions. The string field must have a definite parity under the

combination of the Hermitean conjugation (hc) and the inverse BPZ conjugation (bpz−1)

to guarantee that the string field theory action is real [53]. If we denote the conjugate of

a string field A in this paper and in [24] by A∗, it is defined by

A∗ ≡

{
bpz−1 ◦ hc(A) when the ghost number of A is 0 or 3 mod 4,

−bpz−1 ◦ hc(A) when the ghost number of A is 1 or 2 mod 4.

With this definition, the following relations hold:

(QBA)∗ = QBA∗, (AB)∗ = (−1)ABB∗A∗,

where (−1)AB = −1 when both A and B are Grassmann odd and (−1)AB = 1 in other

cases. If we denote the conjugate of a string field A used in [23, 51, 52] by A‡, it is defined

by

A‡ ≡ bpz−1 ◦ hc(A)

for any ghost number. With this definition, the following relations hold:

(QBA)‡ = − (−1)AQBA‡, (AB)‡ = B‡A‡,

where (−1)A = −1 when A is Grassmann odd and (−1)A = 1 when A is Grassmann even.

The open superstring field Φ has ghost number 0, and thus Φ‡ = Φ∗. The reality condition

is satisfied when Φ‡ = Φ∗ = −Φ. The open bosonic string field Ψ has ghost number 1, and

thus Ψ‡ = −Ψ∗. The reality condition is satisfied when Ψ‡ = −Ψ∗ = Ψ.
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A. Expansion

In this appendix we present the expansion of the solution Φλ to third order in λ. We first

expand G(λ) in powers of X:

G(λ) = X + λ[(QBX)PX + XP (QBX)]

+ λ2[(QBX)P (QBX)PX + (QBX)PXP (QBX) + XP (QBX)P (QBX)]

+ O(X4).

(A.1)

– 10 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
2

The expansion of eΦλ is

eΦλ = Pexp

[∫ λ

0
dλ′G(λ′)

]

= 1 +

∫ λ

0
dλ1G(λ1) +

∫ λ

0
dλ1

∫ λ1

0
dλ2G(λ2)G(λ1)

+

∫ λ

0
dλ1

∫ λ1

0
dλ2

∫ λ2

0
dλ3G(λ3)G(λ2)G(λ1) + O(X4)

= 1 + λX +
1

2
λ2[(QBX)PX + XP (QBX) + XX]

+ λ3

[
1

3
(QBX)P (QBX)PX +

1

3
(QBX)PXP (QBX) +

1

3
XP (QBX)P (QBX)

+
1

3
X(QBX)PX +

1

3
XXP (QBX) +

1

6
(QBX)PXX +

1

6
XP (QBX)X

+
1

6
XXX

]
+ O(X4).

(A.2)

The expansion of the solution Φλ is given by

Φ(1) = X,

Φ(2) =
1

2
[(QBX)PX + XP (QBX)],

Φ(3) =
1

3
(QBX)P (QBX)PX +

1

3
(QBX)PXP (QBX) +

1

3
XP (QBX)P (QBX)

+
1

12
X(QBX)PX +

1

12
XXP (QBX) −

1

12
(QBX)PXX −

1

12
XP (QBX)X.

(A.3)

Note that Φ(1), Φ(2), and Φ(3) satisfy the reality condition. The BRST transformation of

Φλ to O(λ3) is given by

QBΦ(1) = QBX,

QBΦ(2) = (QBX)P (QBX) −
1

2
(QBX)X +

1

2
X(QBX),

QBΦ(3) = (QBX)P (QBX)P (QBX)

+
1

2
X(QBX)P (QBX) −

1

2
(QBX)P (QBX)X

−
1

4
(QBX)[(QBX)PX + XP (QBX)] +

1

4
[(QBX)PX + XP (QBX)](QBX)

+
1

12
XX(QBX) −

1

6
X(QBX)X +

1

12
(QBX)XX.

(A.4)

Let us next expand the equation of motion. Since

e−ΦQBeΦ = QBΦ +
1

2
(QBΦ)Φ −

1

2
Φ(QBΦ)

+
1

6
(QBΦ)Φ2 −

1

3
Φ(QBΦ)Φ +

1

6
Φ2(QBΦ) + O(Φ4),

(A.5)

– 11 –



J
H
E
P
0
9
(
2
0
0
7
)
0
8
2

we have

η0QBΦ(1) = 0,

η0

[
QBΦ(2) +

1

2
(QBΦ(1))Φ(1) −

1

2
Φ(1)(QBΦ(1))

]
= 0,

η0

[
QBΦ(3) +

1

2
(QBΦ(1))Φ(2) +

1

2
(QBΦ(2))Φ(1) −

1

2
Φ(1)(QBΦ(2)) −

1

2
Φ(2)(QBΦ(1))

+
1

6
(QBΦ(1))Φ(1)Φ(1) −

1

3
Φ(1)(QBΦ(1))Φ(1) +

1

6
Φ(1)Φ(1)(QBΦ(1))

]
= 0.

(A.6)

It is easy to confirm that Φ(1), Φ(2), and Φ(3) in (A.3) satisfy these equations.
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